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Preface

This report addresses the implementation of a

pseudo-olosed loop control law to a spacecraft intercept

problem formulated as a differential game. Althoug, it

Is recognized that a solution to the two-point boundary

value problem is required to initiate this control law,

methods to obtain solutions are not discussed in this

report. My purpose is to validate the control law for

a more reaiatic prcblem than has been previously demon-

strated.

I wish to express my sincere appreciation to Prof.

Gerald M. Anderson of the Air Force Institute of Technology

for his advice and assistance in this effort.

Gary D. Bohn
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t Abstract

A near-optimal closed loop control law for zero-sum

perfect information differential games is tested on a free

final time, minimax range, pursuit-evasion game between two

constant thrust spacecraft.

The control law is based on a periodic first order

update to the costate vector. This costate correction is

generated from the state error from a reference TPBVP

solution. Two nearly equivalent methods to obtain the

relationship between the costate correction and the state

error are tested. Three coplanar trajectories and two

non-coplanar trajectories are tested using various vehicle

characteristics.

The control law is shown to provide the pursuer an

effective means to take advantage of non-optimal play by

his opponent; thereby reducing the final range below the

original TPBVP solution.

Plots comparing the TPBVP solutions and the trajec-

tories resulting from application of the control law against

several non-optimal evaders are presented.

xii



APPLICATION OF A NEAR-OPTIMAL CLOSED LOOP

CONTROL LAW TO A PURSUIT-EVASION

GAME BETWEEN TWO SPACECRAFT

I. Introduction

Bakound

The theory of zero-sum perfect information differential

games has been successfully applied to a large number of

problems in which two players have diametrically opposed

goals. One serious drawback to the application of differ-

ential games, however, is that closed loop control laws, by

which one player could take advantage of non-optimal play

by his opponent, have not been developed for realistic,

non-linear problems. To date, closed loop control laws

have been developed only for linear-quadratic problems

(Ref 3) and for simple problems of low state dimension

(Ref 5).

Anderson (Refs 1,2) has proposed two methods to gen-

erate near-optimal closed loop solutions to non-linear

differential games. However, he has applied these methods

only to simple problems with low state dimension. The suc-

cess of these methods on realistic non-linear problems with

large state dimension has yet to be demonstrated.

Statement of the Problem

Scope. This study applies these two near-optimal

closed loop control laws to a free final time, minimax range

11



pursuit-evasion game between two sDacecraft. Both coplanar

and three dimensional models are used.

Assumptions. Both vehicles thrust continuously with

constant thrust, the thrust of both vehicles being the same.

If either vehicle ceased thrusting, the problem becomes a

one player game, the advantage passing to the player which

is still thrusting. A simple intercept or avoidance prob-

lem results.

Two-body dynamics with an inverse square gravitational

field are used. The central attracting body is considered

to be a homogeneous sphere, and the vehicles are considered

to be point masses. All perturbative forces, other than

thrust, are neglected.

The payoff is the separation between the vehicles at

final time. The pursuer's goal is to minimize final range;

the evader's goal to maximize this same quantity. Each

player has perfect information on the current state of the

system and the performance capabilities of his opponent.

Each controls his thrust direction to achieve his desired

goal.

The mass of each vehicle decreases at a constant rate

proportional to the vehicles' thrust. Minimum range is

assumed to occur prior to either vehicle exhausting its

available fuel.

There are no barriers or Ill-defined surfaces. That is,

it is assumed that the solution in the small is valid.

Approach. The two-point boundary value problem (TPBVP)

2
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describing the coplanar free final time, minimax range

differential game will be formulated and solved, using a

variety of vehicle thrust-to-weight ratios and different

final ranges.

Using a TPBVP solution as a nominal trajectory, both

control laws will be extensively tested, using various non-

optimal controls for the evader, in order to demonstrate

the equivalence of the two methods. In addition, the

effect of different sampling intervals will also be In-

restigated. Each control law will then be tested on other

nominal trajectories, allowing the evader to use several

non-optimal controls.

Finally, the model will be expanded to allow both

players to thrust out of the plane of their trajectories,

and to allow a non-coplanar intercept. Two nominal

trajectories will be investigated here; the first, in which

both vehicles are initially moving in the same reference

plane, and the last, in which the pursuer is initially out

of the reference plane of the evader.



II. Equations of Motion

Coplanar Equations Of Motion

The equations of motion for two-body orbital dynamics

are

F s

ro 2 ' Foo (2)m

where the thrust angle or is measured from the local hori-

zontal as shown in Fig. 1. Additionally, since the thrust

is constant, the mass is allowed to vary by

- -.F

Ur

Fig. 1. Coplanar Orbital Geometry.

" 4



Rewriting Eqs. (1) and (2) in terms of the radial and

transverse velocities, Vr and V , gives
r

F Fsin a
+r F -s,+- (5)r rMrr

Vr V0  F__s

r rr (6)

where

Vr (7)

V 0  v (8)

IT is desirable to normalize the equations of motion

so that all parameters are the same order of magnitude.

This is done by defining the state variables

x (9)ro

Vr (10)

Vo

VO (12)

V/0
where ro is the radius of a circular orbit at the surface

of the earth, and V is the transverse velocity of that

circular orbit.

i 5



The non-dimensi:nal time unit is introduced

Vo t--- (13) "

The time derivatives must be converted to tau derivatlves

by

do d (t d(
df" - d 6\T Vo J dt

The vehicle mass and mass flow rate are also normalized

relative to the initial mass so that

m- I+ r (15)

• F
M = Vomopg

Using Eqs. (9) thru (12) and Eq. (14), the normalized

state differential equations become1

X, X (17)
, X I C sin a sAZx2 1 Csn

^ X, X "

(19)
X,

-ZX + CCos CV, (20)

Tau derivatives will be indicated by a prime (') to avoid
confusion with time derivatives.

6
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where

rF (21)

These equations of motion apply to both vehicles.

Three Dimensional Equations of Motion

If the pursuer and the evader are not initially in the

same plane, or if the thrust direction is not restricted to

lie in the orbital plane of the vehicle, then three dimen-

sional equations of motion must be used.

Using the spherical coordinate system indicated in

Fig. 2, the three dimensional equations of motion for two

body dynamics are

rrOz -r €sinzO' 0 _ Fsinc1  (22)r 4 -- (22) ,

mz
re +2 6 -r~cosesin& C5ICSL (3m

rOsine + 2rO~cosO+2rsiO sine 2

where the thrust angles a, and CZ are measured as depicted

If Fig. 3.

If the vehicles lie in the same reference plane (O=1T/2),

and the thrust direction is restricted to lie in the plane of

the orbit, these equations reduce to the coplanar equations

of motion, Eqs. (1) and (2).



I |ee
I Ie

Fi. 2. Three Dimensional Orbital
Reference Frame.

As in the case of the coplanar equations of rotion,

Eqs. (22) thru (24) are rewritten using the radial velocity,

the theta-transverse velocity, and the phi-transverse

velocity as variables.

. . .. -V- ---e+ (25)
r r r2

... ..V_ Val Fco~sC o5:
Ve V - o "=O(26)

r r m

V sine - sinO + eV coSe FSlntCos a (27)
r r m

where

(28)

VO rO(29)

V re (30)

8



er T F/2 CY, 1

IF

INi.

Fig. 3. Body-Fixed Reference
Frame.

[' Using the defining relationship given by Eqs. (13) and

(14), and the normalized state variables

r
Y1 = - (31)

(32)

V0
~*~z e 33)

V0  (34~)

z= 0 (35)

9



the state differential equations are

X/Xz (37)

XSin'X3 _ I+Csn (38)x z X 1 X , X , rM

-~x 4  (9)X,

x, X,

X,
X7. __ X4X o . C ia Ocz

7 -- + ~ ou~ (40-)

X, Xsn X.3  m Sn X

where C is defined by Eq. (21) and the mass varies by

Eqs. (15) and (16(.

Again, the motion of eaoh vehiele is governed by these

equations.

I0



III. Differential Game Formulation

The pursuit-evasion differential game presented here

is free-time, with final range as the payoff. The solution

to the differential game is required prior to initiating the

control law. The formulation follows that of Bryson and

Ho (Ref. 3).

Coplanar Game

Both the pursuer (P) and the evader (E) have identical

state equations given by Eqs. (17) thru (20). Thus

X i X P (43)

4 - + CPsin u (44)

Xtp (45)

"XCPC0 Lk (46)

mp

4.= Xze (47)

Xe 1 + Cen v (48)
Xte Xle Me

X4e (49)
Xie

- XzeX4e + Ce C.05 V (50)
4me Xle nme

ii

-- - v t f k . x- f z -: r *f *~ * .- ±- - -



where u and v are the thrust angles for the pursuer and

evader, respectively. The mass of each vehicle varies

aocording to Eqs. (15) and (16)

The desired result for any intercept problem is to

hit the target vehicle, or at least to get as close as

pos3ible, at which time the warhead is detonated. The

target vehicle should attempt to escape the interceptor;

that is, to maximize the range at closest approach. Thus,

the final range is a natural choice for the payoff for this

game. The distance between the two players is given by the

law of cosines (Fig. 4). For simplicity, the square of the

final range is used, scaled by a factor of one-half.

2 [1 t + X'-2 x1, Y Cos (x3p- ye)] (51)

I-

Fig. 4. Coplanar Range

12
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Since there is no path cost, the Hamiltonian (H) is

formed by adjoining the costates to the state equations.

+X.xz +z , +I 1P MPLL

+= A(4 + A--P-

+A A () + X, x + CooL. )e -me
+Ase Xze + Ae +Ce tV (2Xie Xem

The costate differential equations are given by

' X = -Hx --g(x, ,-r (53)

which yields

A' 2 _ _ 4,+, _a _ (54)

X~Xfe
+ 4 P(55)

xIP

S.(56)

S+ (57)
Xp XIpX

13



(4e AiXe ~A.Xe (A ~

ee X (68)

XL e. X L Xe

A e At + (.59)
Xte

2A.€ X: +I .... --e (61)
4dX le X l X,

The expressions for the pursuer's optimal control

angle are found by minimizing the Hamiltonian with respect

to u:
to U H, , Cp c.os u. A Cp s n u 0 (62)

mp

which yields

A2P
ta~n C. -(63)

The iufficiency condition

It X2PCPsin U ).C cosU>
_____ -> (64)MP~u Mmr, fip

requires that

sifln (65)

Cos 'L,- - (66)

14



The evader's optimal control is found by maximizing

the Hamiltonian with respect to v. An expression similar

to Eq. (63) results, except that the sufficiency condition

(HvV < 0) requires that

Sin V (67)V ze + 4e

Cos V A4e (68)

The transversality conditions give the value of the

costates at final time

AN') (69)

AIf4~ -I Xie COS lXap- X3e))l (70)

A,, (r) 0 (71)

, (-r) = 0(73)

X, - (x. .- X, s (x, - X(,))) (74)

A (2e ) 0 (75)

An additional requirement for the free time problem is

that the Hamiltonian be zero at final time. Substituting

15



the expressions (70) thru (77) into Eq. (52) at final time

gives

O)hj [Xi? X, + Xle X-Ze

- (4?x Xle +Xtpz) C~OS (YF Xse)

((78)

This is the same condition as requiring the range-

squared rate to be zero at closest approach. Differentiating

Eq. (51) and setting the result equal to zero gives

0 Y1P Q + xe.Xle

(XX Xe + XI xa) 4 (Xap )

Xl XtpXe (X5' - )4e) %M (Xip 4a) (79)

Substi uting Eqs. (43) thru (50) gives

O Xipy4p + XieXz

- (Y2P Xie + XIFxes) co (xp- x~e)
+ (Y1pye- Xp 4e) '6i (X3P -A-) (0

which, when evaluated at final time, is the same as Eq. (78).

The two-point boundary value problem (TPBVP) for the

coplanar model is given by Eqs. (43) _ (50), (54) .b u

(61), (70).thru (78), plus the initial values of the states.

Three Dimensional Game

As in the coplanar game, the pursuer and evader have

the same state equations.

16



x4x~ x4.=,8
XZPS~L~ Ae C in U,)

-- + -(82)

XAIP (83)
X.,

(85)

-XApX~ A4 ±~NcsC i w t (86)
XI? Xip Sinl 4p M 16in X.

Xlexe (87)

X' Sly'%X3e I Ce nVL (88)
leXie Xy)

Xte (89)

Xl- X 4e XL snX~ec~o5,X, Ce COS VI~V (90)

s~e (91)

- L)4e-?;!2 tX~ o X _ _ _ _ (92)
Xliel SnX3 MeSin X~e

17



where ul, u2 , V1 , and v2 are the thrust angles for the

pursuer and evader, respectively.

Again, the payoff is one-half the square of the final

range between the two players. However, a straight-forward

application of the law of cosines cannot be used in this

case, since, in general, the plane defined by the position

vectors does not lie in the 0- or 9-plane (Fig. 5). Recog-

nizing that the law of cosines may be written as

reveals the clue to determining the range between the vehicles.

/ / - \ .

REVRE

Fig. 5. Three Dimensional Range

By reference to Fig. 2, it can be seen that the com-

ponents of the position vector in the inertial reference

frame ; y, z) are

18



r Co0 sinO1
sin 0sinO (94)

Performing the dot produet iii EFq. (93), the payoff

beoomes

'x + -xA~rXe l(opXe

+ Co ya Cosx~a(95)

The Hamiltonian is

H XiX~4 +J I4 +Sf~ -f %n u

+ COalCOSoLz) + +

-~ ~ ~~C si q,9X~ Lo CPIUC U.))

YIP sin X3p AP Sifl xeX2

&~Sr1Xec ) Xe Ce sin Vz

4ie ~( xzf XeC

C~eCos V, Cs VZ k) v(XeK

19



2 4e X cos e Ce stn v, co ) v,(6- - ~e Ln) -I-(96)
XieMe nM XSe.

The costate differential equations are

Xt= -Ul-q(x~A,-rj (97)

A

p +

A.p - A4 (X-,
XIp X itX c"' p X.. +~ X~ ~ esn p

+~ + (10)

=-sin~ 1  X40X1 o ~

A2x A o sX3 (100)

A- 'X ] (103)

20



le~ [X, +' - Ve si 'n;LW~ Xi 3eW "77~V

-X4eX2.t X4c. 4- XOSzec Sxe) A~e4e

kef~(zeXe +2 ~ ot Xp)J(104)

(YXte+2Y4*Xew a

v- _~~o AzXe~nX~e _ .co2X

+ +etcc) 3  (105)
e InXe j)A( (&e/udXf

Aze X" $i 2X~e.X ~ cosXs

2 AuXAe e Xz (107)3

+~ (108)

-~~~~~ Are~z &)4 cos~ (109

)b e X~e

21



Applying the optimality conditions

H, xpCccmua~snL, +____________OS~ (110)

rAP Gin )

? -ssin x p

from which

tuin Lk' (112)

tanL4 + (sinrSU 1+ (113)

The sufficiency conditions require the matrix Huu be positive

definite

jj Cos -Xp C -S (, sin u (114)

From Fig. 3,

(115)-2

so that

Cos Q2z >/ ) (116)

Thus, from Eqs. (110) and (114)

COS u, (11,7)

-S ?vp/stn A(p

=V, + (XP/in (xp)8)

22



In addition,

( X4e sin u,

-h~= X7,1lu- os~.( 4p co > 0 (119)

Using Eqs. (113) and (114), the requirement for the in-

equality in Eq. (119) to hold is that

It follows that

Cos U-4 (121)

An additional requirement for the matrix Huu to be

positive definite is that

Det HL, > 0

Using Eqs. (117), (118) and (120), it can be easily shown

that

U? =0uu (122)

Thus, the matrix is positive definite.

Following the same procedure to find the evader's

eontrol

X4e Ce SnV, cos_ V e Ce cosVco s V.
- _ _ j___ _ (123)Hnne Oe sl 6

( V C I s (124)
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-tc n v', (125)x,

Since the evader is maximizing the payoff, the suf-

ficiency conditions requirp that Hvv be negative definite.

This requires

Hv,v,-- = O mV2 A-/41 CMS V, silyl V, (127

NE )0 (127)

As with u2, v2 is restricted to

Ir IT (128)

22

so that

cos V >' 0 (129)

and, from Eq. (127)

C.05 V, X4C (30
.o v1 =J\L + (A/ 4le Z 1x30

), /sin X3e.
I/lZ n(iesr x4 1  (131)

Again, using Eqs. (130) and (131), it can be shown

that

Hv, = H v;,- 0 (132)

~24



so that, for H to be negative definite requires

Hv.z -zesmfV2 + CcoSVz(-AeCOSV, (133)V~)<

Using Eqs. (125) and (127)

/Asv 2= z + (t.e/i X.;t

The values of the costates at final time are given by

the transversality conditions

NY(~) Ox(1i)( (136)

Atp t~~Yip-xe1SInXap sin K&. c.os(s,-Xse)

+ (.Os X3p CM xae]) (137)

~~zp(4~ 0(138)

?p(1+-)= ( X~pXie ceOSs ,51Iv X& COS(xsp -xe

si %43 cos X3e~ (139)

f(1) (Xi X~e sin 13p sinfle s in (Xe -Xre)) (141)

kX,(W= 0 (142)

+ CC ~ OS 3cKsX3)T (143)
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A~e(1~) ( o X e i cos X3e)vp s(s..(s
(145)

Ase(Tf)= -Xe pX1 CY3e.p.siX ny3 C0(p- Xse)) (,7

A4(-q)- 0 (148)

As before, the Hamiltonian must be zero at final time.

Using Eq. (96) and Eqs. (137) thru (148)

-(XteXp + Xp Xe) [Sn'Xip sin X. -csY(sp-Yse)

+ 05Xco e]- &Xl, [M5X3P51 X' ~'XpXe

- Sin COSX3C]+ (YX,e-X1,4e) Sin XIP Sln' SIn(p- Xse)

- ~K? XTS~ X~rcosY~c4X~X~e~ Co X~~in(14+9)

As in the coplanar ease; the stopping condition that

the range-squared rate be zero at closest approach gives

the same expression as Eq. (149).

For the three dimensional game, the TPBVP is given by

Eqs. (81) thru (92), (98) thru (109), (137) thru (149),

and the initial values of the states.
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IV. Pseudo-Closed Loop Control Law

The pseudo-closed loop control law used in this report

is based on a periodic first order update to ;he costate

vector. At each sampling time, this update Jb, generated

from the difference between the actual statei and the

states of a reference trajectory. The reference trajectory

assumes optimal play by both players from the sampling time

to final time.

For the error in the state vector Rt time tk given by

the costate vector is updated by

?tk Ar.e tK) + 8,\(tK) (151)

The correction to the costate vector is produced by

'8A (tK)~ C 8X tK) (152)

where C is an n x n "control" matrix.

Two nearly equivalent methods have been proposed to

generate this C matrix (Refs. 1,2).

Backward Sweep Method (Ref. 1)

Assuming free final time and no control constraints,

the linearized TPBVP is (Ref. 3)

,k f(SX + fxA Sx(t,) given (153)

+ X g \8 (154\

27



tQ dr1t , Ctf- (157)

where 4tis the terminal constraint, V is a Lagrange multplier

associated with /, and

£2&(0+.~, + L (158)

The solution to this linearized TPBVP is assumed to

have the form

=W rnt Rt m(t 61 X (159)
) 0(t) it) dl (160)

where S is an n x n matrix, R and m are r - vectors, and Q,

n, and O are scalars.

For the problem considered in this report, there is no

, so that Eqs. (155) thru (157) reduce to

r ~ (162)

atI2 £zJ [dt, (163)

and the assumed form of the solution is

F [ m (164)

[ MT a LItd (165)
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For&.O, Eq. (163) can be solved for dtf.

d~8 'VI (166)

This expression is substituted into Eq. (162) to yield

&\(42 ___ (167)

XKZ

Eqs. (164) and (165) become

(168sX- (S- )Sx S g8x

Thus S is the desired control matrix.

Differentiating Eq. (168) and substituting for 8X, 8X,

and 8 yields

O + S4 X+ fX 9A S9 (169)

with the condition at final time

X A(170)

Between sampling times, Eqs. (169) and (170) are used to

generate 'd and Eq. (168) is used to obtain the costate cor-

rection, SX(tk), as a function of the state error, Sx(tK).

29



Transition Matrix Method (Ref. 2)

Again assuming free final time and no control constraints,

the linearized TPBVP is given by Eqs. (153) thru (157). For

problems in which there is no W, and for Q*O

dt Xt (166)
t

and

A 8x 44) (171)

where

A- - (172)

The solution to the linearized TPBVP is written as

t+t)~ )~ (tt4X(t) +± X\t oak-, (173)

+ (174)

Substituting Eq. (172) for SX(t).3ives

where

X (t, fxx t, A(177)
X &~(t~t+)± N'~ttj.)A (178)
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Solving Eq. (175) for U^R)and substituting Into Eq. (176)

. . ... (t ) (179) (

This provides the relationship between SX and SX at

time tk,, and the control matrix is1 ) 1.
The state transition matrices are obtained by backward

integration of

L± fy 4X + ' X180)

XhfCA+ , 0h (181)

~AK 9X A~t.4 (182)

from tf to tk, and Eq. (179) is used to generate the cor-

reotion to the costate vector.

ImDlementation of the Control Law

To use this pseudo-olosed loop control law, a player,

say the pursuer, initially plays his open loop controls for

a short time, while simultaneously integrating the system

state and costate equations, and the necessary equations to

generate the control matrix, backward from final time. At

Each sampling time, tk, the pursuer compares the actual

state of the system with the reference trajectory. Any

non-optimal play by the evader will be manifested as a

deviation in the states. The pursuer then updates the

31



costate vector by Eq. (151). Using the updated costate

vector, the pursuer again plays the updated open loop control

until the next sampling time. Now it is necessary for the

pursuer to integrate the states and updated costates forward

until the stopping condition is reached to predict the final

conditions for the new trajectory. Since the solution is

only updated to first order, the transversality conditions

are not, in general, satisfied at the final time. Thus, the

final values of the costates must be adjusted to meet the

transversality conditions. Using these new terminal conditions,

a new reference trajectory and control matrix are generated

by backward integration, as before. The problem ends when

the range rate is zero. Figure 6 presents a simplified flow

diagram for the control law.

Linearized TPBVP Coefficients and Terminal Conditions

The coefficients for the linearized state and costate

equations, Eqs. (153) and (154), are presented in Appendix A.

The expressions for the terminal conditions given by

Eqs. (170) and (172) are given in Appendix B.
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V. Results

The test cases presented in this report were numerically

simulated on a CDC 6600 computer using a predictor-corrector

integration scheme. Three coplanar trajectories and two

non-ooplanar trajectories were Investigated. The trajeo-

tories used different vehicle characteristics and varying

final ranges as indicated in Table I. In all oases, the

predicted trajectory was Integrated forward until the stop-

ping condition was reached, and the costates were adjusted

to satisfy the transversality conditions prior to integrating

the reference trajectory.

Coplanar Model

A sampling interval of 0.012 TU was arbitrarily chosen

to test the control laws for the coolanar trajectories.

This nominally provided 16 updates along the trajectory.

Both the backward sweep method and the transition matrix

method effectively reduced the final range to a value less

than the nominal final range, except for the case where the

evader used the control V = 1.0. This result was not too

surprising since this was very near the evader's optimal

oontrol. When the sampling interval was decreased to

0.008 TU, with V = 1.0, the control law was able to achieve

a final range less than the nominal.

Both the backward sweep method and the transition

matrix method produced similar, though not identical, results
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when tested on Trajectory 1. Differences can best be

attributed to the additional numerical operations associ-

ated with the transition matrix method.

To reduce the computation time, the integration step

size for the transition matrix method was initially double

that of the backward sweep method. It was found that the

control matrix so produced was not symmetric (as it should

be if the two methods were indeed equivalent), the elements

were not close to those of the S matrix generated by the

backward sweep method, and the transition matrix method did

not perform nearly as well as the backward sweep method.

When the integration step size was made identical to that of

the backward sweep method, the final results improved, the

control matrix became symmetrical, gererally, to five sig-

nificant figures (usually, to six significant figures), and

the elements agreed well with the elements of the S matrix.

Since decreasing the sampling interval to 0.008 TU

improved the final range for V = 1.0, it was decided to

increase the sampling interval to 0.016 TU to see how

badly the method suffered from the use of fewer updates.

(This would nominally provide 12 updates.) Again, the

control law was able to decrease the final range below

the nominal except in the case where V = 1.0. The surprising

results were that in two cases, V = 3.0 and V = -3.0, the

final range was less than for the smaller sampling interval.

This is possibly a result of the way in which the control
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law works. That is, the first order correction at the long-

er sampling interval may have combined in such a way as to

create chese anomolies in the final range.

The final ranges achieved for all the coplanar tra-

jectories are summarized in Table II. Plots of all the

coplanar trajectories are presented in Appendices C thru E.

Each plot compares the TPBVP solution with that produced by

the control law. A range trace for the final portion of

each trajectory is also shown.

Three Dimensional Model

Because of the larger state dimension, along with the

geometric increase in the number of U matrix differential

equations, the samrling interval was increased to 0.024 TU

to test the control law for the three dimensional model.

The transition matrix method was not tested.

Since Trajectory 4 was the same as Trajectory 1 except

that both players were allowed to thrust out of the ref-

erence plane, a test case was initially run to validate

the three dimensional control law. The evader's controls

were set at VI = 1-571, V2 = 0.0 so that the evador would

remain in the reference plane. (This corresponds to the

coplanar case for Trajectory 1 with the control V = 0.0.)

The resulting final range was slightly larger than that

achieved for the coplanar case with a sampling interval of

0.016 TU, as could be expected. More significant was the
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result that the control law did not erroneously drive the

pursuer out of the reference plane.

In all cases but two, the control law decreased the

final range below the nominal final range. The two ex-

ceptions were for V1 = 0.0, V2 = 1.0; and for V1 = 1.571,

V2 = 1.0. As before, this was not too disturbing, as the

evader's optimal controls were in this quadrant. A decrease

of the sampling interval to 0.016 TU was sufficient to

obtain a favorable result for the latter case. However,

for V1 = 0.0, V2 = 1.0, the sampling interval had to be

decreased to 0.012 TU to obtain improvement on the final

range.

Table III summarizes the final ranges achieved for the

non-coplanar trajectories. Plots of the non-coplanar

trajectories are presented in Appendices F and G. The

nominal trajectories are presented in each case for com-

parison, and the range trace for the last portion of each

trajectory is also given.

General Comments

Real Time Considerations. To be of practical use,

this control law must be capable of being implemented in

real time. This can be a formidable task for realistic

problems with large state dimension. Both methods tested

require the forward integration of 2n differential equations

for the trajectory prediction. In addition, the transition

matrix method requires the backward integration of 2n(2n+1)
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equations to generate the reference trajectory, while the

backward sweep method requires n(n+2) equations to be

Integrated. The computational burden of the backward sweep

method can be reduced to An(n+5) differential equations

by taking advantage of the symmetry of the U matrix. This

is a significant reduction for large state dimension prob-

lems.

For the coplanar model considered in this report,

the transition matrix method required integrating 272

equations to generate the reference trajectory, and the

backward sweep method requircd 60 equa ti ns. This latter

number could have been reduced to 52 equations. For the

non-coplanar model, 168 equations were integrated to

generate the reference trajectory. This could have been

reduced by almost 40% to 102 equations. The transition

matrix method would require the Integration of 600 equationst

Using a sampling interval of 0.012 TU, the backward

sweep method required a maximum computation time of 12.2

seconds to compute a reference trajectory for the coplanar

model, and the transition matrix method required 24.2 sec-

onds. This is not real time, as 0.012 TU corresponds to

approximately 9.7 seconds. For the non-coplanar model,

with a sampling interval of 0.024 TU (19.36 seconds), the

maximum computation time was 32.03 seconds. By reducing

the number of equations to be integrated for the S matrix,

both of the backward sweep models could be performed very
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close to real time for the svecified sampling interval.

Stability of the Backward Sweep Method. While the

backward sweep method enjoys the advantage of the lesser

computational burden, the S matrix sometimes becomes in-

finite during the backward integration of the matrix Riccati

equation, Eq. (169). For the problems considered in this

report, the matrix originally became unbounded during the

backward integration. This problem was resolved by de-

creasing the integration step size to one-half its original

value, to 0.0005 TU. However, using this new integration

step size, the backward sweep method failed on Trajectory 3.

Predicted Range at Each Update Time. Tables IV thru

XIII present the predicted final range at each update time,

based on optimal play by both players from the update time

to final time. The predicted range did not, in general,

monotonically decrease at each successive update on a given

trajectory. Only in those cases where the evader's control

was near-optimal did the predicted range display a monotonic

decrease. This phenomenon is apparantly a result of non-

unique solutions which result when the evader behaves in such

a way that the pursuer has sufficient control to drive the

range to near-zero.



TABLE IV. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajectory 1, Transition Matrix Method,
Sampling interval = 0.012 TU

(Entries rounded to two decimal places)

Predicted Final Range (NM)
samplim ..

Time Evader's Control (Radians) _

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0

0.012 3.57 7.39 8.53 6.29 2.53 2.15 2.68

.024 0.79 6.50 8.97 4.37 2.10 4.03 2.16

.036 0.68 5.32 8.73 2.35 0.68 4.50 0.90

.048 2.64 4.50 8.74 0.69 0.70 4.44 1.49

.060 1.43 3.52 8.69 0.70 0.59 4.88 0.54

.072 1.89 2.62 8.69 0.77 4.62 4.72 1.88

.084 0.56 2.43 8.70 0.95 3.59 4.71 1.95

.096 1.61 2.03 8.70 1.58 2.49 5.03 1.61

.108 1.52 1.40 8.70 1.69 2.21 4.95 1.47

.120 1.33 2.14 8.70 1.68 2.34 4.90 1.61
e-132 !Z:37 8zs 7O 1 .68 n., e. a i, n.J

.142 1.84 2.02 8.70 1.68 1.20 5.21 1.07

•.156 0.77 2.19 8.70 1.68 -1.- 08 5.12 1.44

.168 o.30 12.62 8.70 1.68 1.36 5.08 1.22

.180 0.15 1.89 8.40 1.68 1.35 5,07 1.41

.192 0.72 1.73 8.39 1.68 1.34 5.06 j0.57

.204 0.19 2.59 ---- --- 1.4 6
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TABL V. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajeotory 1, Backward Sweep Method,
Sampling Interval - 0.012 TU

(Entries rounded to two decimal places)

Sampling Predicted FInal Range (NM)

Time Evader's Control (Radians)

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0

0.012 3.57 7.38 8.53 6.29 2.53 o.6l 2.68

024 0.79 6.50 8.97 4.37 2.10 4.07 2.16

.036 0.68 5.32 8.72 2.35 o.68 4.03 0.90

.048 2.64 4.50 8.73 0.69 0.70 4.04 1.49

.060 1.43 3.52 8.69 0.70 0.59 4,35 0.54

.072 1.89 2.62 8.69 0.77 4.02 4.32 1.88

.034 0.56 2.43 8.70 0.95 2.59 4.25 0.22

.096 1.61 2.03 8.70 1.58 2.61 4.63 1.62

.108 1.52 1.40 8.70 1.69 1.79 4.52 1.53

.120 1.33 2.14 8.45 1.68 1.80 4.48 1.90

.132 1037 1 1.01 8z44~ i.68 1. 80 3. 09

.144 0.27 2.02 8.39 1.68 1.80 4.79 1.38

.156 0.77 1.29 1 8.36 1.68 1.80 4.70 1.51

.168 o.64 1.74 8.35 1.68 1.80 4.67 1.27

,180 0.30 1.19 8.34 1.68 1.80 4.66 1.50

.192 1.10 1.97 8.33 1.68 1.80 4.65 o.60

.204 0.•32 1.81 --. 1.•6
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TABLZ VI. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajectory 1, Backward Sweep Method,
Sampling Interval a 0.016 TU

(Entries rounded to two decimal places)

Predicted Final Range (NM)
Sampling

Ti"e Evader's Control (Radians)

3.0 2.0 11.0 0.0 -1.0 -2.0 -3.0

om16 2.26 6.95 8.61 5.81 1.53 2.40 1.76

.032 1.99 5.91 9.04 3.56 3.01 4.94 3.31

.048 1.14 4.75 8.85 1.52 1.46 k.97 2.10

o064 3.75 3.19 8.81 1.60 1.73 15.16 1.61_

.080 0.83 2.47 8.78 1.70 1.88 5.15 1.74

o096 1.63 2.12 8.80 1.73 2.40 5.13 1.47

.112 2.40 1.39 8.56 1.72 2.31 5.36 0.63

.128 0.96 1.96 8.53 1.72 1.27 5.29 2.15

14 0.53 1.52 8.47 1.72 1.29 5.22 0.60

1a6o 0.90 1.43 8.45 1.72 1.37 5.24 1.11
0%.e# 4 &ht. a WLL n -67A

.192 0.46 1.07 8.43 1.72 0.66 5.52 0.89

208 0 .28 -- -- ---- ----- ---- 0.3'-
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TABLE VII PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajeotory I, Backward Sweep Method,
V 1 1.0, Sampling Interval a 0.008 TU

(Entries rounded to two declmal places)

Sampling Final Sampling Final Sampling Final
Time Range Time Range Time Range

0.008 8.46 0.072 8.57 0.136 8.32

.016 8.61 .080 8.57 .144 8.28

.0241 8.59 .088 8.57 .152 8.25

.032 8.57 .096 8.57 .160 8.23

.040 8.57 .104 8.57 .168 8.22

.04.8 8.57 .112 8.57 .176 8.21

.056 8.57 .120 8.57 .184 8.20

064 8.57 012 8  8.33 .192 8.20
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TABT VIII, PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajectory 2, Rackward Sweep Method,
Sapling Interval = 0.012 TU

(Entries rounded to two decimal places)

Predicted Final Range (NM)
SamplingT m Evader's Control (Radians)

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0

0.012 18.11 23.37 25.03 21.70 16.46 13.96 16.66

.024 14.02 23.48 24.97 20.52 10.33 3.26 11.20

.036 7.56 21.84 24.84 17.38 2.48 6.92 3.61

.048 1.89 20.39 24.75 14.38 4.72 7.07 3.88

46o .64 19.07 24.68 11.72 3.25 7.06 1.60

.072 1.19 17.74 24.52 8.97 1.21 7.02 1.54

.084 1.79 16.64 24.42 6.66 1.14 7.24 2.08

.096 3.71 15.51 24.36 4.61 0.73 7.16 3.58

.108 1.79 14.53 24.19 2.73 4.39 7.13 1.79

.120 z.24 13.65 21s.10 1.03 3.80 7.34 1.69

It129 1 >, 12 AR >LLfl flk A ~ ) UA 11 r n bA

.144 1.31 12.21 23.97 0.97 2.63 7.21 1.63

.156 o.36 11.68 23.82 '1.23 2.66 7.21 0.08

.168 0.36 11.32 23.76 1.92 2.68 7.44 0.86

.180 1.03 10.88 23.72 1.91 2.68 7.39 0.35

.192 1.63 10.66 23.70 ----- --- 7.36 1101

.20 o.46 10.67 - ----- 1.33
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TABL IX. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajectory 3, Transition Matrix Method,
Sampling Interval = 0.012 TU

(Entries rounded to two decimal places)

Predicted Final Range (NM)
SamplingSTiM Evader's Control (Radians)

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0

0.012 16.57 22.90 25.00 20.89 14.62 11.58 14.85

.024 7.93 20.81 24.82 16.72 4.09 3.30 4.42

5" .036 0.93 18.77 24.75 12.67 5.57 2.60 5.44

.048 1.29 16.81 24.57 8.87 2.75 4.10 2.35

.060 2.12 15.07 24.46 5.23 0.98 4.44 2.00

.072 5.11 13.23 24.27 1.81 1.10 4.25 7.49

.084 0.57 11.47 24.15 0.64 1.03 5.03 4.37

.096 0.84 9.83 23.94 4.06 0,,99 4.87 2.40

.108 3.24 8.44 23.81 0.82 1.20 5.16 0.57

* .120 4.84 6.72 23.60 1.47 2.27 5.41 3.06

.132 0.38 5.60 23.46 4.47 1.94 5.70 0.84

.144 1.78 4.49 23.26 2.35 1.32 5.45 3.27

.159 5.02 3.33 23.13 2.38 2.30 5.72 0.57

.168 1.68 2.55 23.04 2.39 2.08 6.04 2.05

.180 1.91 2.60 22.99 2.39 2.27 5.83 0.93

.192 2.70 1.72 22.96 -- -- 5.77 3.00

.204 1.45 2.28 - ---- ----- 1.15

. 216 1.*50------------------ ~-0--- ---- 1.*22

,228 1.51 -- -- 0.63
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TABLE X. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Tralectory 4, Backward Sweep Method,
Sampling Interval = 0.024 Tj

(Entries rounded to two decimal places)

Predicted Final Range (NM)

Evader's Control (Radians)
Sampl ing

Time i "O.0 V1 = 1.571 V1  .14
V2 = 1.0 V2 = -1.0 V2 = 0.0 V2 = 1.0 V -

0.024 8.30 6.70 4.21 8.30 6.70

.048 8.74 7.19 1.67 8.75 7.18

.072 8.27 7.00 1.56 8.28 6.99

.096 8.35 6.71 5.45 8.36 6.71

.120 8.04 6.63 2.47 8.05 6.63

.144 8.08 6.66 1.69 8.09 6.65

.168 7.95 6.68 0.50 7.96 6.67

.192 7.92 6.67 7.93 6.67
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TABLE XII. PREDICTED FINAL RANGE AT EACH SAMPLING TIME

Trajectory 5, Backward Sweep Method, V1 =0.0,
V2 = 1.0, Sampling Interval = 0.012 TU

(Entries rounded to two decimal places)

Sampling Final Sampling Final
Time Range Time Range

-

0.012 16.14 0.108 16.75

.024 18.51 .120 16.63

.036 18.51 .132 16.44

.048 18.18 .144 16.32

.o6o 17.75 .156 16.30

.0?2 17.48 .168 16.2o

.084 17.19 .180 16.13

.o96 16.98 .192 16.10

TABLE XIII. PREDICTED FINAL FANGE AT EACH SAMPLING TIME

Trajectory 5, Backward Sweep Method, V = 1.571,

r2 = 1.0, Sampling Interval = 0.016 TU

-(Entries rounded to two decimal places)

Sampling Final Sampling Final
Time Range Time Range

.032 15.94 .128 15.09

.04,8 15.66 .144 15.07

.o64 15.52 .16o 1-05

.080 15.23 .176 14.87

.096 15.20 .192 14.86
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VI. Conclusions

The control law proposed by Anderson has been applied

to a free time, minimax final range pursuit-evasion game

between two spacecraft. The coplanar enco,'nter was ex-

tensively Investigated using the backward sweep method and

the transition matrix method. The backward sweep method

was also applied to the three dimensional intercept problem.

The control law has effectively demonstrated its

ability to guide the pursuer to a better solution when the

evader is behaving non-opcimally. The shorter sampling

interval, in general, p rovid*4 greater improvement on the

final range, In addition, the two methods proposed to im-

plement the control law have been shown to produce equivalent

results.

Another significant conclusion from this Investigation

which must not go unmentioned, is that the control law dis-

played remarkable flexibility in the problems considered.

The basic logic displayed in Fig. 6 was used in all computer

programs used to simulate the control law. The basic program

used for the backward sweep method was only altered to

accomodate differences peculiar to the transition matrix

method, and in the three dimensional case, to accomodate

the larger state dimension. These programs were used,

unaltered, to test all cases presented in this report. No

"fine tuning" of any kind was necessary to adapt the programs

t( each particular case.
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The problem of real time computation is not considered

an insurmountable problem in the implementation of this

control law. Special use computers, along with parallel

processing could provide rapid update solutions. In an

actual encounter, the ccstate vector should be updated as

often as each new reference trajectory becomes available.

This should provide better results than those achieved with

the fixed update times used in this report.

One disadvantage of this control law which this . - _

report has not considered, is that a reference TP 2

solution is required prior to starting the procedre, The

TPBVP solutions used for this report were generated using

a general purpose algorithm developed by M. J. D. Powell

(Ref. 6).
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Appendix A

Coefficients for the Linearized TPBVP

The linearized state and oostate differential equations

may be written

9 ,8x +P9,x

Since the state and costate equations are separable, the

n x n coefficient matrices f., fX, gx, and gX may be par-

titioned as follows;

L o :-I- ---,
0 Xej

where the elements of the sub-matrices are

(f) A

( 47 Ap)j
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and similarly for the evader coefficient sub-matrioes.

Coplanar Model

The coefficient sub-matrices for the pursuer are

0 0 a

0 /

o 0 0 0

o (T ,%! ,). 0

o o o

56



qxP=. t ~e0 0 (t l
0 .. 0 0 0

IZA9)p= + A,,

The Cooffleloent sub-matrices for the evader are

0 I 0

xee xle il(e
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o e Ce A-ze X4e
fAe+

o0 e 0~ ~ c t

XIL

~L2 AteX4e +AR)
F A4e hzeI

Ae- -txe
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Three Dimensional Model

The non-zero coeftioients for the pursuer are

4 XIL XLI

- N? -

TXP 24 -x ~pp

Kip

1p

xip

XzX UP 2 X~X A Cot -P
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f - .%4~'P+ Ce (2- os
P 6x~p stiTXSP jWY 2~3

,&P,4 - v__p_(low

4 X~( -~(K-p + Z 4f cot Xap)

F ~ ~ ~ A 24:Cp~\

A?44 D

4AP4(. Drl -5 x k4

;AP re IjjXf Jr-jj-S

iXU 2x~ Y4?Cot X1'*) + A-P4ft ~'p

12.I -Ff x, +- Ax,,)

X, IVI (Z'iXIAP + AV X COS 2X +

9XP14 (126p" A~v - 2.4 ot Kp 4Aap)

6o



+I
h p ('K,. -Z+ ot 4a

9XPz24 9XPI.

9x,\ -,p 0, e.-2, 4Zq t 2X e23p

+4- 4 p X4P XW COthp CC 2XSP)

9 ~ A~f xw (Ae usp* + A~f 4? 7-Zhp

xf4j 9xp 34

Kip

9XP44Xq- xcoSnxp

F . n=s
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9 XPg4

where

Dp =X~f+A~fI

The non-zero coeffioleits for the evader are

fez, = I-&f~th IXAe &~e -eCS)3

lXez. Det-in-

ixeZ4

4'--
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f~e4 qt )CO621A3e + c Ae A(eW6cos

Xie

Fx~r ~(Xze Ue + 2'xe 4ie cot X-s)

- I -zX, o

-L ( X2C+ -94 Xe)Ct

f- mm M -V

f.C A-to. >mc
fAet4 Det e42a

4 AeA -Ce (AA
DYL DtDeIS.
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-Ce Ae A~e- X~

tDeVI SO-Ue(Ds e

x~leSM 24i + Xse Ue
Ae2X(XUbewtX-e7]

X42 ej (Y.- ~e + 2~ X~e)h atXa

= ~ k )ve K~(2 +w 22Ce + X~e c2

q~etAv Tz (242e X4e + Xje - X4e.e X2.e X,e hte)

(% +. (Z. . X~e C-Ot -93J

Xie a
9xeii

'lxz4= %JZ4~e~Xe

64



2. -(f I2(, 4 Ae o ts2 e4cMe

9Y.ei 9xeI4

9xe3 9

Qkie

De ?e. 4 SIAt%3
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Appendix B

Terminal Conditions for the Control Lars

The terminal conditon given by

must be evaluated at final time prior to the backward

Integration for both control laws.

Coplanar Model

The non-zero elements of the Ox matrix are

0xx 115 z =9S

0 j XI3 (eA)j

Oxs (XP 8)1-4.
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(X -XeB - XAk)

SIX, V P-eB) f

[(X~ Xe Xu) A + (xpxi- Xlp)(e)'}

.Px (Xe A)<
p :(he -X Z B + Xet.4P

S.((Xie -
4.?)I

E fzp Xte + Xt rze) A -(q Xte- Xt pK4e) 1]~

where

A s (X3 '- x__)
BCOS (Xa8 - x

(This scalar product was performed by matrix multiplication

within the computer program.)
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Three Dimensional Model

The non-zero elements of the matrix are

SB {Xe cA~ c -SA CB), Ow
Ox s (Xie SA S9, SC)T = xq

Oull =Xe~~ 06 -CC -A-S)r 4K7

Ox 9= -EpXi (cz A, - C .- C - A

0X~35 ( Xie SAC'SB $ SdT}4, XS

4cV {p (cA.5B. CC- - SA- CQTJ

Owq i Xte (CA.- CB , CC + Sky ZB.T

(Xtp Xe CA-F.S) O~ t;

-SA,,1 S5 I C XA

~cx7ei Xip SA.SES SCY)- 4 ii
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0a"I[%pXe(SA-13%Cc *CA-C134

-x, xp - X,e(~S SCC + Ck CES)

XiZle SA s. c c -

+ yk le (%opt$6B'Cc-t+ CA -C.5)

XI U (P .CC + SP,- y3

+ f ie- XlpX~e)( CA,$-S~C)J,4

+('4F~l XpXhe) GAk* SB C.CJri

14 (Ye Sk SB S C)14

Xe ($~A. - B - + CA -C 5]r
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Sl 9  E Xz.P+ YX2CeO) (SA -C 13-CC -CA.- Se

+ (y4p i( x A *-G. CB -SC ,

flXII z (Xie Xz + XtpXhe) 46 -SI -~ C,

UXpXte Ck S6-SC, l-)iX4e SA C&$

-am- (4P Xte - Xtp % e) SA~ B ~r

where

CA Cos Y:-P
SB ly $Wie

C8= co'3e
,£SC- Sin (xcrp- 'Kse)
CC=~ ces(Kp-e

again, g

was formed by ma'orix multiplication within the computer

program.
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Appendix C,

Plots of TraJectory I

-Il
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"1.00 1.04 t.08 1:12 1.18 t:20 t:24
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0 NOMINAL
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Fig. C-1. Trajectory 1, Backward Sweep Method.
V -3.00 Saimplinig Interval = 0,012 TU.
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Fig. C-2. Trajectory 1, Backward Sweep Method.
V - 2.0, Sampling Interval = 0.012 TU.
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Fig C-3. Trajectory 1, Backward Sweep Method.
V = 1.0, Samneling Interval = 0.008 T..
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Fig. u;-4. Trajectory 1, Backward Sweep Method.
V - 0.0, Sampling Interval = 0.012 TU.
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Fig. C-5. Trajectory 1, Backward Sweep Method.
V =-1.0, Sampling Interval = 0.012 TU.
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Fig. 0-6. Trajeotory 1, Backward Sweep Method.

V = -2.0, Sampling Interval = 0.012 TU.
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Fig. C-7. Trajectory 1, Backward Sweep Method.
V = -3., Sampling Interval = 0.012 TU.
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Fig. C-8. Trajectory 1, Transition Matrix Method.
V = 3.0, Sampling Interval = 0.012 TU.
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Fig. C-10. Trajeotory 1, Transition Matrix Method,
V =1.0. Sampling Interval =0.012 TU.
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Fig. C-12. Trajeotory 1, Transition Matrix Method.

V -1.0, Sampling Interval = 0.012 TU.
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Fig. C-13. Trajeotory 1, Transition Matrix Method.

V * -2.0, Sampling Interval = 0.012 TU.
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Appendix D

Plots of Traleotory a
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Appendix R

Plots of~ TraJectory 2
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11Ots 21f Trajectory 4
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V1 = 4.71, V2 = -1.0, Sampling Interval = 0.024 TU.

123



Vita

Gary D. Bohn

He

attended Kansas State University where he earned a Bachelor

of Science degree in Ele,,,trical Engineering. Upon graduation

in 1967, he was commissi. )ned through the USA? ROTC program

and was assigned to USAF Undergraduate Pilot Tralning.

Following completion of pilot training, he served as..&

squadron pilot in the F-132 in Germany; as a Forward Air

Controller and flight instructor in the O-2A in Southeast

Asia; as flight Ins,;ruotor in the T-38; and as a Wing

Operations Stt.ff Of; icer. In June, 1974, he entered the

Graduate Astronautical Engineering program rt the Air Force

Institute of Technology.

124


